
Solving NP-problems using genetic algorithms

Bruno Böttcher

01.01.2018
original source 12.1993 - 6.1994

Version 0002.12h06

Abstract

This paper now goes on with the android version of a utility framework for
solving NP-complete problems using a genetic approach.

After a introduction about the history and problem setting of the project, we
go on discuss how a possible implementation of a genetic algorithm could be
and its associated application.

This framework could be/was used to be applied to varying sets of setups going
from simple toys as a image puzzle solver up to part of a market simulator.

This port of the C++ framework to Java and Android is still rudimentary,
supporting the project through buying the app will ensure it continuation.

Contents

1 Introduction 2

2 Placing algorithms 5
2.1 General information . 5

2.1.1 Input from the logic draft . 5
2.1.2 General terms . 6
2.1.3 Polish representation . 8

2.2 Genetic placing algorithms (at the example GAPE) 9
2.2.1 The quality, aptitude or ”Fitness” of a population 10
2.2.2 Mixture of the characteristics, Cross–Over CO 11
2.2.3 Mutation . 12
2.2.4 The basic concept of GAPE:

”Punctuated Equilibria PE” 13

3 Program environment 15
3.1 Android specific problems . 15
3.2 Definition of a test–case . 15
3.3 Results of computation . 15

4 Summary 18
4.1 Summary . 18
4.2 Next objectives . 18

A Used Symbols 19

1

Chapter 1

Introduction

The present work builds upon my thesis (diploma) of electrotechnics in 1994.
The starting problem was a NP-problem [wikiNP], a nondeterministic polynomial

complete problem, meaning the sort of problem where you can’t test all possible cases
in finite time, but checking the viability of a given solution can be computed in a
time growing in polynomial way versus its size.

Examples for NP-complete problems are the traveling salesman, or in the case
of my thesis floor-planning, where different elements of varying or fixed size had
to be placed using a minimum amount of space, or taking into account some extra
constraints, as the number of connections between the elements and their length.

In my thesis a number of solving algorithms were reviewed genetic algorithm
was selected because of the inherent parallelity and thereby the expected computing
time profits using distributed systems, in comparison to the rather long computing
times using sequential processing.

Later then, and since i already had a working implementation, this sort of solving
algorithm was used in a varying set of setups going from simple toys as a image puzzle
solver up to part of a market simulator.

As time evolved, the program was ported from its implementation in C++, to
Java and now finally making its first steps into the Android world.

This paper now goes on with the android version of this utility framework.
The first class of solving problem that was tried to solve with the original frame-

work treated placing algorithms. Placing algorithms are used for the automated
draft of VLSI-circuits. VLSI-circuits are one of the today’s base technologies: the
implementation of complex electrical circuits on smallest space. VLSI-products gain
access in many areas like communication, medicine, automobile industry etc.. With
growing requirements on functionality and the progress in micro-electronics the
complexity of manufactured circuits explodes. The draft of circuits with several
thousand transistors on a chip in economicly meaningful time is only possible with
automated aids.

The draft of VLSI–circuits is usually partitioned in several steps :

• The first step is the logical draft of the circuit, taking the problem definition,
a hierarchical block diagram is created.

2

CHAPTER 1. INTRODUCTION 3

• Subsequently, the physical draft (Layout) follows:

– Placing: In the Layout-phase the placing is the most important part,
determining if a solution can be found for the routing-process. That
is why the development of more efficient placing algorithms is one of
the principal aims that animate Draft automation. Placing itself can be
partitioned in:

∗ Floor-planning: try to find a favorable placing of the modules with
a reduced set of design–criteria. For example, criteria like the non–
overlapping of cells or technological restrictions (e.g. row arrange-
ment with Gate–Array design) are firstly not taken into account.

∗ The final placing produce the conformity to the skipped less im-
portant criteria (e.g. non overlapping).

• The wiring, ”Routing”, tries to place the connections (wires) between the
placed cells.

Since it is not possible to guarantee a solution of the routing process, placement
and routing are iteratively executed until a solution is found.

Whilst the included example is a simplified down version of the C++/Java-
placing algorithm, it is interesting to note that it can be used in nearly identical
way when:

• a puzzle is solved: each piece knows which which pieces it is connected, making
a group of tiles who have to be ordered in a way to minimize the distance
between neighbors, or increase the scale,

• a county, where through inheritance, selling and reselling, the land was frac-
tioned between a multitude of persons, and now the need to restructuring
comes, where all parcels pertaining to one person should be regrouped taking
into consideration ease of access, quality of the soil, access to irrigation, etc.

• a market has to be analyzed where multiple agencies, who have different links
one to another have to evolve in a way to perhaps grasp future trends.

The problem of those algorithms lies in the fact that usually several optimization
criteria must be considered at the same time. To compliquate the problem the
different criteria often negate each other. E.g. even in the simplest case of wire length
minimization the problem belongs to the class of the NP complete ones; this means
that the computing time exponentially increases with circuit complexity, making
impossible the search for a strictly optimal solution with deterministic procedures.
Therefore heuristic procedures are applied.

The heuristic procedure was chosen in analogy to a biological natural phenom-
ena: the evolution of a population (reproduction of the individuals with the best
characteristics) ”Genetic” .

CHAPTER 1. INTRODUCTION 4

For the sake of simplicity, and if not otherwise specified, we will use the case of
VLSI cell placing as a base for our reasoning, but transferring said reasoning to the
other brushed examples is rather trivial.

Chapter 2

Placing algorithms

2.1 General information

2.1.1 Input from the logic draft

The logical draft provides the following data:

• The list of the Modules M, described in a matrix M, in witch together with
the cells mi ∈ M is included data about the cells, like the coordinates of the
Cell, possible time-critical behavior, increased power dissipation and similar
things, this supplementary data is called Attributes.

• The connection–list N .

Example of five interconnected cells, their ideal arrangement can be seen in the
Picture 2.1.

The extracted data for this example could be like the one showed in the following
picture 2.2. Thus the attribute matrix M and the net-list N could have following
aspect:

The attribute matrix contains beside existential data as wire length also different
additional library data, like for example ”Aspect– Ratio”, used by the more complex
algorithms to take better account of the form of the cells. Aspect–Ratio means
the different side relations, a cell can take with different possible layouts. This

m
3

m
4

m
5m

1

m
2

Figure 2.1: Five connected Cells

5

CHAPTER 2. PLACING ALGORITHMS 6

M = (
posyxpos

&
1
&

1
&

- -
- -
- -
- -
- -

Typ
Aspect-
ratio

1.8
1.8

+

1
1

1.8
0.2
0.2

-
1
1
0.2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.){Attribute

{(Zelle1,Zelle2),(Zelle1,Zelle5), ...N =

Figure 2.2: Input from the logical draft

follows from the fact that, depending on where the inputs-/outputs (pins) have to
be situated, different cell–layouts exists to fit the best needed way.

In the matrix from the example the x– and y–positions are filled with dashes.
In the case of a genetic solver, which is said to be of the class of iterative placing
procedures, versus placing algorithms (not treated here) iteratively tries to improve
an initial proposal. These need an initial placement, which can be gained from a
random distribution or from the result of a iterative placing procedure.

2.1.2 General terms

In this work the word ”cell” stands for the item to be placed. A cell is the smallest
unit to be placed. This can be a transistor or a macro–cell1

To simply search for a solution that fits in a particular rectangle being a bit easy,
we introduced the concept of linking the cells through wiring.

Since free wiring (curved) is very difficult to realize with automatic draft a lim-
itation is introduced in form that the router only uses horizontal and vertical seg-
ments. In analogy to the special architecture of Manhattan this geometry type is
called Manhattan–geometry.

Minimum wire length and half rectangle scope (LHR)

The restriction due to the Manhattan–geometry influence the wire length: the min-
imum distance between two pins corresponds now to the half Rectangle scope and
no more to the Hypotenuse. Half rectangle scope means the sum of a vertical and
horizontal edge of the Rectangle, which has the two analyzed pins as diagonal corner
points:

LHR = |xPin1 − xPin2|+ |yPin1 − yPin2| (2.1)

Since there is no shorter way with this restriction, the LHR length describes the
minimum wire length. For this reason the LHR–length is used as a lower limit wire–
length estimation. This estimation is valid only for networks with two to three pins.
For networks with more pins an increasing error occurs. Here networks means the
wires that connect the cells.

1a macro cell consists of a net of standard cells, these standard cells for their part are constructed
with a net of transistors.

CHAPTER 2. PLACING ALGORITHMS 7

However statistically seen, in a circuit the networks with two to three pins out-
weigh, so a relatively good estimation can be made with the half Rectangle scope.

Thus the minimum wire length between two with n networks (= wires) connected
cells becomes:

Lmin k,i =
n∑
ν=1

LHR =
n∑
ν=1

|xk − xi|+ |yk − yi| (2.2)

In the case of the Floor-planning generally for reasons of simplification all pins
are placed into the center of the cell:

Lmink,i =
n∑
ν=1

LHR = n ∗ LHR (2.3)

The entire minimum wire length of the placing proposals results from the sum
of the individual wire lengths.

Connection weight

In some cases an appreciation of the number of connections (Networks) per cell was
needed. The number of connections is called Connection weight. The Connection
weight is defined as follows:

Vi =
∑

k∈Ni∩Nj

(
nk + λ

nk
) ∧

{
nk = Number of pins from Ni ∩Nj
λ usually =1

(2.4)

The Nj and Ni describe the networks with origin in the cells j and i. Thus the
cut of the two Network-lists gives the common connections of the two cells. λ is a
correction factor for the adjustment of the function.

Cost function

With the preceding definitions a cost function can be defined:

K = α1Lmin+α2FChip+α3Fov + · · ·∧

Lmin minimal total wiring length
FChip used chipsurface
Fov overlapping
...

(2.5)

The weight factors α accentuate the importance of certain attributes.

The sense of the cost function, (usually only the difference ∆K is used), consists
of judging the quality of a draft. Depending of the placing algorithm more or less
attributes are taken into account, whereby the minimum wiring length Lmin the
Basic structure forms. Theoretically the cost function can be arbitrarily defined.
Here are defined the different priorities of the attributes. According to experience a
linear cost function like the one in the Formula has shown best behavior.

CHAPTER 2. PLACING ALGORITHMS 8

A

A

B

B+ =

A B A B* =
Figure 2.3: picture about the Polish Notation

+

*
*

1

2 3

4

1

3

2

4

Figure 2.4: example of the translation of a placing proposal as slicing structure

2.1.3 Polish representation

The result of placing is a partitioning of the chip surface in subregions of the size
of the cells. This fact can by described with the introduction of the cut tree ”slic-
ing tree”. The placement does not anymore be described as a sequence of cell–
coordinates, but as a sequence of vertical and horizontal cuts. For this a symbolic
representation is needed: a ”*” stands for a vertical and a ”+” for a horizontal cut
(see picture 2.3).

This representation was taken also as an analogy to the way proteins produced
by a genetic DNA strand fold themselves.

Since a given partition can be described with different polish representations the
normalized representation is used. Here the cuts are made alternatingly horizontally
and vertically. So a hierarchical structure is developed, which can be represented by
a binary tree. Each ”leaf” corresponds to a cell and is provided with a number.

M =

1 2
4 1
4 3
7 2

 (2.6)

The matrix describes the placing shown in the picture 2.4. The coordinates
describe the center of the cells to be placed.

In order to be able to handle this structure more easily with computers, the tree
is read out. The result is an arithmetic expression in inverted polish representation.

CHAPTER 2. PLACING ALGORITHMS 9
eine PlazierungPopulation

zwei Eltern
generieren Kind

8 7
23

65
4
1

*

+ +

+
*

* *1
4

5 6
8 7 2 3

1 4 5 6 * + + 8 7 * 3 2 * + *

Figure 2.5: picture to a genetic Model

This means that the operators are placed before the operands. Since the cut graph
can be read out in different manners the following convention is introduced: The cut
graph is read from top to bottom and from the right to the left and this structure
represented as a tree. The result is read vice versa, thus from bottom to top and
left to the right. So a character string in Polish notation is achieved, which can be
defined as normalized (see pictures 2.3 / 2.4 and Formula).

123 + ∗4∗ (2.7)

2.2 Genetic placing algorithms (at the example

GAPE)

Genetic algorithms are characterized by the following approach: at each time exists
a solution set, called population, which is permitted to ”procreate”, to develop itself
further (see picture 2.5). Single solutions are called ”individuals”. The next gener-
ation consists of the survivors of the preceding. The survivors are the individuals,
with the best caracteristica (the fittest). A suitable representation must permit the
judgment of the aptitude of the different solutions and the creation of new solutions,
see [wikiGA] for a more in-depth discussion about genetic approaches to problem
solving.

In analogy to [Wong86] and [Coho91] the description of the cut tree as polish

CHAPTER 2. PLACING ALGORITHMS 10

representation is selected. This representation has the advantage of making the
partitioning–data available in a vector. Further it describes a hierarchical structure.
The advantage stays in the fact that the lower sub–trees (which contains the leaves)
represent the strongly interlaced subnetworks. This makes some operations easier:

• it relieves the new calculation of the cost function, here called ”fitness”;

• The structure of the proposal can be better displayed.

Thus a placement–proposal represented in polish notation is called in the subse-
quent text ”placement–rule”.

In the case of the reproduction two phases are differentiated:

• The generation of offsprings by two parents. The characteristics of the parents
mixed and transferred to the descendant In senses of placing: The information,
which is contained in the placement–rule of the parents is merged with the help
of the so-called ”cross–over–operators” into the offspring.

• The uncontrolled modification of the placement–rule by mutation.

2.2.1 The quality, aptitude or ”Fitness” of a population

The first genetic algorithms used simple relations for the measure of the Fitness
with the cost function (K):

• ∼ 1
K

• ∼ (C − K) where C is a constant, which must be big enough avoiding the
Fitness to become negative.

In GAPE a better, dynamic formulation of the Fitness was selected. It is deter-
mined by the momentary cost function:

Fitness(x) =
(µK −K(x)) + ασK

2ασK
(2.8)

where:
α Weighting factor is, which is set initially to 1.
µK is the expectancy value of K
σK is the standard deviation of K
Further it is defined that, if the Fitness becomes smaller than zero it is set equal

zero, since no negative Fitness should exist.
This follows the observation that in the case of random distribution the cost

function obeys to a Gauss–distribution.
This is still a TODO for the android project, since actually only one cost–function

is implemented, which takes into account deviance of the quadratic from of the
solution, and the wiring cost.

Conversely, and since only on way of weighting the solution is implemented at the
moment, the cost was taken directly to compare the fitness of the different solutions.

CHAPTER 2. PLACING ALGORITHMS 11

2.2.2 Mixture of the characteristics, Cross–Over CO

Here are introduced the Cross–over–operators from GAPE.
GAPE differentiates four different CO–operators, CO1 · · ·CO4

• CO1/CO2: are thought as character string manipulators, the result is again a
normalized placement–rule. They produce out of two parents one descendant.
Each time a complete placement rule is taken:

– CO1 copies all operands from P1 on the same positions on the offspring O.
That means that the operands of the offspring O are on the same places
and of the same type as in the P1. Subsequently, the operators are taken
out of P2, selected from left to right and inserted in the vacant positions
of the offspring. Thereby the operands (= cells) which were clustered
in P1 remain together, whilst the overall cut–structure is changed.

– CO2 is inverted to CO1. Here the cut structure P1 is copied into the
offspring O and the operands transferred into the vacant positions.

• CO3/CO4: These partition–rules achieve the transmission of subtrees. The
increase of fitness occurs at the beginning in the subtrees. Therefore this two
CO–operators are specialized to manipulate sub–trees:

– CO3 selects a sub–tree S (= character string from the partition–rule) out
of P1. A character string represents really a sub–tree, if the rightmost
character is an operator, and the sum of the operators equal to the sum of
operands minus one is. This subtree is inserted at the same place in the
offspring O. This place is then excluded from the following steps. Now
a operation like in CO2 is performed: the remaining cut structure of P1

(= the operators) is transferred on the offspring. The operands from P2

are now filled in the vacant positions. Here must be taken care that no
two equal cells are in the offspring placement–rule. Whilst the selection
of the current operand out of P2 a check must be performed for presence
in the offspring in S. If this is test is positive, this operand is ignored
and the next one taken.

– CO4 produces two offsprings: in both parents a subtree of equal dimen-
sions is selected. Now the sub–trees are exchanged: two steps with CO3

are executed: P1 and S2 are merged to O1 and P2 and S1 are merged to
O2.

The Cross–over–operations are shown graphically in the picture 2.6.
In the actual implementation only crossover 1 to 3 is implemented, the 4th variant

adding only programming complexity without really adding deeper solution space
exploration.

The Cross–over–operators cause big jumps in the solution space at the begin-
ning. With rising Fitness they cause however only an exploration around the fittest

CHAPTER 2. PLACING ALGORITHMS 12

Kind 6 5 4 1 * + + 8 7 * 3 2 * + *

Elter1 1 4 5 6 * + + 8 7 * 3 2 * + *

Elter2 2 6 8 * * 7 * 5 + 4 * 1 3 + +

Cross-Over3

Kind1 1 4 5 3 * + + 2 6 8 * * 7 * *

Elter1 1 4 5 6 * + + 8 7 * 3 2 * + *

Elter2 2 6 8 * * 7 * 5 + 4 * 1 3 + +

Cross-Over4/1

Kind2 8 7 * 3 2 * + 6 + 5 * 4 1 + +

Elter1 1 4 5 6 * + + 8 7 * 3 2 * + *

Elter2 2 6 8 * * 7 * 5 + 4 * 1 3 + +

Cross-Over4/2

Elter1 1 4 5 6 * + + 8 7 * 3 2 * + *

Elter2 2 6 8 * * 7 * 5 + 4 * 1 3 + +

Kind 1 4 5 6 * * * 8 7 + 3 2 * + +

Cross-Over1

Kind 2 6 8 7 * + + 5 4 * 1 3 * + *

Elter1 1 4 5 6 * + + 8 7 * 3 2 * + *

Elter2 2 6 8 * * 7 * 5 + 4 * 1 3 + +

Cross-Over2

Vererbungsmechanismen

Figure 2.6: The Cross–Over operations

solutions. The modification of the behavior is not due to a change of the CO–
operators, (in the Implementation of the algorithm they remain constant), but by
the fact that the parents grow together. This approaching is called speciation or
”clustering”. Empirical studies showed best results for random selection of the four
CO types at cross–over stage.

2.2.3 Mutation

Mutation selects randomly an individual and changes it, alternating one place in
the partition–rule swapping two adjacent fields. In the original implementation, all
combinations were permitted :

• two operands

• an operand and an operator

• two operators

The problem with this operation is that the partition–rules obtained could be
not normalized. This is however permitted within original GAPE, since it was
demonstrated that the quality of the solutions was thereby improved. If the Muta-
tion really operates randomly, better results can be achieved since a bigger solution
space is explored.

But the hassle to cope with non-normal trees, and thus the associated computa-
tional increase didn’t show for my test runs the big benefit advertised, thus i dropped
this f̈eaturë, changing the mutation function to check:

• if a leave, then ask the parent node to exchange left to right

CHAPTER 2. PLACING ALGORITHMS 13

• if a node randomly change the type of the node

• for a future TODO allow to exchange nodes in a bigger subtree than just the
parent node

At the start the Mutation produces big jumps in the solution–space, whereas
only a very weak effect can be noted at the end. This is due to the fact that in the
case of high fitness of the individuals a mutation produces a big increase of the cost
function. Nevertheless the features of the bad solutions can be passed on, since the
selection of the individuals for the next generation occurs only at the end of one
generation. Thus parts of the new solutions which possibly lower the cost function
can be used in conjunction with the fitter individuals. For this reason the number
of mutations is not reduced at any moment.

But another concept was introduced, instead of strictly separating mutation
and cross-over phases, it was chosen to mix them, allowing also certain cross-over
offsprings to incur a mutation on the fly. At the moment , the probabilities are 75
For a further TODO, it would be nice to make those probabilities adjustable by the
client, this being, as with with many other heuristics, one of the many parameters
that want to be set. The right choice making the difference between a good solution
and a bad one.

2.2.4 The basic concept of GAPE:
”Punctuated Equilibria PE”

”Punctuated Equilibria PE” was developed as a proof for the darwinistic theories
and proved in the nature. The predicted result is: if an organism is introduced in
a new, empty and closed system, then it rapidly begins to develop itself in many
subspecies (”allopatric speciation”), until the available ecological niches are filled.
When the niches are filled, the different species get in to balance (”Stasis”) and
there is only a weak genetic Drift.

• allopatric speciation means the rapid formation of new Genotypes (species)
from a small genetic set (for example the birds on the Galapagos–islands).

• Stasis is reached, when each ecological niche is filled. Mutated individuums
are not able to survive. The available resources are occupied by the existing
kinds. This brings to predicate following rule: a kind of being survives, as
long as does its environment.

Thus it can be said that a good method for bringing up new kinds out of a given
set, consists of bringing those well-known kinds into new environments. Genetical
algorithms (GA) produce a set of similar solutions (types). These form a stable
system, which hardly changes (Stasis). Thus it can occur that the solution space
in the proximity of the minima is only insufficiently investigated. This fact predicts
better results for GAPE than for GA. GAPE can be described as making a parallel

CHAPTER 2. PLACING ALGORITHMS 14

run of many singular genetic algorithms, in which at regular intervals happens a
catastrophes to force new development.

The original [Coho91] refers that a parallelization of genetic algorithms is possible
by distributing the Cross–Over and Mutation operations. This would result in an
”Hardware–accelerator”. They present a method, which promises a higher gain in
speed. Therefor a new concept is introduced: punctuated Equilibria.

In order to work efficiently, this algorithm needs several closed locations, where
different populations can grow up. This step is suitable for parallelization: Each
processor receives a population of m Individuals. In parallel are executed the gener-
ations and at the end of one ”Epoch”(=defined number of generations; theoretically,
reaching Stasis) each processor sends its fittest individuals to the other processors.
If a fixed Epoch–length is used, the synchronization of the processors is simplified
since the load can be set in order to let all processors terminate at same time.

This way the fittest solutions from all the areas must go in concurrence against
each other. With the partitioning of the evolution–process a bigger area of the
solution space is examined. The Fitness calculates in dependency of the local–
populations. Thus modifies the estimation of individuals with introduction of new
ones. With the number of exchanged individuals after each epoch, the range of
the catastrophe can be adjusted. Further it would be conceivable to put different
accents on attributes in the cost function of the different environments.

The algorithm is from the complexity O(m2), determined by calculation of the
cost function. The authors [Coho91] state that a linear speed increase is achieved
along with the number of processors. This is supported by [Bril90].

For this reason and the inherent parallelity this algorithm was selected for im-
plementation.

A further reason to prefer GAPE–like algorithm is situated in the attainable
quality: the analytic Algorithm provides after a calculable number of cycles only
an almost optimal result. The genetic algorithm can with favorable adjustments of
its parameters, along with sufficiently computing power and time deliver optimal
results.

The problem with this is situated in the correct adjustment of the parameters.
Here a big experience with placing problems generally and genetic algorithms spe-
cially is necessary.

In the Java-gape project, this was achieved with every client holding a popula-
tion of individuals working each with another cost-function. And, indeed, a wider
search of the solution-space was noted, even if the total number of individuals per
population had a bigger impact on breaking the punctuated equilibria problem.

The Android Gape still lacks support of multiple populations. Furthermore,
the different environmentsẅere simulated through different cost-functions, another
feature not yet present in the android version.

Still, the sending and receiving of ı̈ndividuals̈ıs implemented, a system using mul-
tiple populations, and working distributedly over several android devices wouldn’t
be too hard to implement at the actual stage.

Chapter 3

Program environment

3.1 Android specific problems

Since the life-cycle of an Android app depends on the available RAM and process-
ing power of the device on older devices, and depending on the size of the chosen
example, it appeared that the program is killed as soon as it leaves the actual con-
text, thus making it foreseeable that if several devices want to cooperate for a given
solution the program probably will need to stay in the foreground, also due to the
fact that the use of heavy duty background services are not in the favor of actual
google-app-policy.

3.2 Definition of a test–case

A standard case was defined: meshed network of homogeneous linked cells is build,
at the moment only one of the mesh–factories is implemented in the android-version,
building a varying sized mesh of cells linked with their neighbors, in matrix form.
In this case the optimal result is easily conceivable for a e.g. 10x10, see picture 3.1.

3.3 Results of computation

A representative number of configurations still need to be run, so far we can offer:
nevertheless a few statements could be won:

• too short epochs with few populations cause rapid homogenization of the pop-
ulations. This produces rapidly identical populations, this leads with high
probability to a local minimum and no longer corresponds to the concept of
punctuated equilibria.

• more individuals per population seem to bring no improvement on the result,
however extending the number of populations. Here must be found the right
equilibria between size of the problem, number of populations and number of
individuals per population.

15

CHAPTER 3. PROGRAM ENVIRONMENT 16

Figure 3.1: Homogeneously interlaced Modules

1 2 3 4

5 6 7 8

9 A B C

D E F G

1

25

9

D

6

A

F G

C

B

7

84 3

E

Test (sequentielle Abarbeitung)

?
Nach 10x200 Generationen

keine vorgeschriebene Chip Flaeche

Kostenfunktion =

500 Individuen * 3 Populationen
Erhoffte Loesung
Kostenfunktion = 48

Nach 2x10 Generationen

vorgeschriebene Chip Flaeche=5x5
Kostenfunktion = 102

100 Individuen * 3 Populationen

Figure 3.2: calculation–examples

CHAPTER 3. PROGRAM ENVIRONMENT 17

• defining a surface limit factor into the cost function has shown positive effects,
preferring the solutions that fit on the reserved surface.

• as very important emerged the fact that no identical solutions should be al-
lowed. Otherwise the population fills rapidly with one good solution that
emerged. This effect is more important in our implementation since we use
the sorted array, and when the effect of duplication begins, it rapidly take the
whole population over.

Chapter 4

Summary

4.1 Summary

This project achieved only part of what the C++ original was able of, at the moment
the basic genetic approach was implemented, the parallelization, and the ability
to stack hierarchically different solving steps (solving the global problem, soling
at the same time, the placement also of the subproblems inside the cells) wasn’t
implemented.

In the case that unexpectedly some funds are raised, the android version would be
developed to match at least the state of the 1994 version, with multiple populations/cost-
functions and distributed clients.

4.2 Next objectives

• The existing statistical functions of the algorithm are thought to help observe
the evolution of the populations. Precisely the process of mixing populations
should be examined more closely: The influence of bringing individuals into
an existing population, regarding to the difference of fitness and related to the
number of invading individuals versus the population size.

• allow the sending of custom cost–functions by the users, to allow different in-
terpretations of the found solutions. This is already prepared, but not fully im-
plemented/tested the floor-planning module being the only one implemented.

• with more incentive i could port the puzzle solver, which cuts up a photograph,
puts it on top of a mesh, scrambles the mesh, and tries to find the image back.

18

19

APPENDIX A. USED SYMBOLS 20

Appendix A

Used Symbols

M,N Matrices
m Cell = element of M
x··· y··· Coordinates
LHR Half Rectangle scope
Lmin k,i minimal wiring–length between Cell k ∧ i
k, i indices, used to differentiate two cells
Vi connection–weight
λ, α Correction–coefficients
F··· surfaces, areas
K Cost–function
T Temperature
Φ target–function
gµν weighting factors
µk expecting value
σk standard deviation

Genetic Algorithms
P··· = Parent = a solution proposal
O offspring issued out of two parents
S··· subtree = character string extracted out of P
G(p) degree of order
take from S. 23

Neuronal Algorithms
Ze(s) = area of influence
Sk layer
& AND–operation
1≤ OR–operation

Used Abbreviations
NP–complete non–polynomial–complete
SA Simulated Annealing
GORDIAN Global Optimization and Rectangle Dissection
SAP Somatotopical projection for Placement
HNP Hierarchical neuronal Placement
ASA Adaptive Semantic Projection
GA Genetic Algorithm
GAPE Genetic Algorithm with Punctuated Equilibria
CO Cross Over

List of Tables

21

List of Figures

2.1 Five connected Cells . 5
2.2 Input from the logical draft . 6
2.3 picture about the Polish Notation . 8
2.4 example of the translation of a placing proposal as slicing structure . 8
2.5 picture to a genetic Model . 9
2.6 The Cross–Over operations . 12

3.1 Homogeneously interlaced Modules 16
3.2 calculation–examples . 16

22

Bibliography

[Bril90] F. Z. Brill, D.E. Brown, W. N. Martin : Genetic Algorithms for feature
selection for counterpropagation Networks. In Institue of parallel computation
University of Virginia, pages 90–105, 1990

[Coho91] J. P. Cohoon, S. U. Hedge, W. N. Martin D. S. Richards. Distributed
Genetic Algorithms for the Floorplan Design Problem. In IEEE Transactions
on CAD, pages 483–491, Vol. 10, No. 4, April 1991

[Wong86] D. F. Wong and C. L. Liu. A New Algorithm for Floorplan Design. In
IEEE Transactions on CAD, pages 483–491, Vol. 10, No. 4, April 1991

[wikiNP] https://en.m.wikipedia.org/wiki/P versus NP problem .

[wikiGA] https://en.m.wikipedia.org/wiki/Genetic algorithm .

23

